51 research outputs found

    Capacity, Fidelity, and Noise Tolerance of Associative Spatial-Temporal Memories Based on Memristive Neuromorphic Network

    Full text link
    We have calculated the key characteristics of associative (content-addressable) spatial-temporal memories based on neuromorphic networks with restricted connectivity - "CrossNets". Such networks may be naturally implemented in nanoelectronic hardware using hybrid CMOS/memristor circuits, which may feature extremely high energy efficiency, approaching that of biological cortical circuits, at much higher operation speed. Our numerical simulations, in some cases confirmed by analytical calculations, have shown that the characteristics depend substantially on the method of information recording into the memory. Of the four methods we have explored, two look especially promising - one based on the quadratic programming, and the other one being a specific discrete version of the gradient descent. The latter method provides a slightly lower memory capacity (at the same fidelity) then the former one, but it allows local recording, which may be more readily implemented in nanoelectronic hardware. Most importantly, at the synchronous retrieval, both methods provide a capacity higher than that of the well-known Ternary Content-Addressable Memories with the same number of nonvolatile memory cells (e.g., memristors), though the input noise immunity of the CrossNet memories is somewhat lower

    Phenomenological Modeling of Memristive Devices

    Full text link
    We present a computationally inexpensive yet accurate phenomenological model of memristive behavior in titanium dioxide devices by fitting experimental data. By design, the model predicts most accurately I-V relation at small non-disturbing electrical stresses, which is often the most critical range of operation for circuit modeling. While the choice of fitting functions is motivated by the switching and conduction mechanisms of particular titanium dioxide devices, the proposed modeling methodology is general enough to be applied to different types of memory devices which feature smooth non-abrupt resistance switching.Comment: 17 pages, 5 figure
    • …
    corecore